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Numerical integrations of the partial differential equation proposed by Filyand, Sivashinsky, and
Frankel [Physica D 72, 110 (1994)] to describe the dynamics of outward accelerating flames are present-
ed. The computational results reported by Filyand, Sivashinsky, and Frankel are confirmed: as time in-
creases, a repetitive formation of cusps, as well as a rapid (power-law) expansion of the mean flame ra-
dius, are observed. However, the identification of invariant subspaces for the equation shows that even
when the initial condition belongs to such subspaces, numerical round-off errors are responsible for ex-
cursions of the solution outside these subspaces. In Fourier space, this corresponds to the generation of
spurious Fourier modes that grow as time increases. This computational error is controlled here by a
filter that forces the solution, at each time step, to stay inside the invariant subspaces. The results of our
filtered simulations are very similar to those resulting from unfiltered integrations, showing that both the
formation of cusps and the rapid acceleration of the flame front are independent of the growth of spuri-
ous Fourier modes. The connection between such dynamics and exact pole solutions of the equation (in
which the number of poles is fixed) is investigated. It is found that the latter are unstable and the more
complicated (stable) dynamics consists of successive instabilities through which the flame front closely
follows a (2N +1)-pole solution before approaching a (2N + 3)-pole solution. These migrations are re-
sponsible for both the formation of new cusps and the rapid power-law acceleration of the mean front.

OCTOBER 1995

PACS number(s): 47.20.Ma, 82.40.Py, 47.20.Ky, 47.54.+1

I. INTRODUCTION

It was shown in [1] that, under a weakly nonlinear ap-
proximation, the dynamics of a cylindrical wrinkled
flame front is governed by a nonlinear partial differential
equation (PDE), which, in nondimensional variables,
takes the form
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Here, ® is the nondimensional interface of the perturbed
circular flame, ®=U,D;/'R, 7 is the nondimensional
time, 7=y2U2D;;'t, and 6 is the angular position
(0<6=<27). In these expressions, U, is the normal speed
of a planar flame relative to the burning gas, D,, is the
Markstein diffusivity and y is the thermal expansion
coefficient. The overbar denotes the average over 6, i.e.,
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I{} represents a linear singular nonlocal operator which
is responsible for the Darrieus-Landau instability [2,3].
It has the two following formal representations:

(@)=L 3 m [Pcos[m (6—]®(3,7)dd ()
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and

I{exp(im6)}=|m|exp(im@) 4)
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in Fourier space.

The numerical integrations of the PDE (1) performed
in [1], as well as those presented in Sec. V of this paper,
show a qualitative agreement with various experimental
results reported in [4]. In particular, cusps are formed on
the interface, which becomes more and more wrinkled as
time increases. As wrinkles develop, the expansion of the
wrinkled front accelerates, and the (azimuthal) mean ra-
dius seems to increase with time according to a 772
power law. In addition, wrinkles have their own dynam-
ics: their shape and angular location change with time.
This repetitive formation of cusps as time increases has
been interpreted as a self-fractalization process based on
a renormalization picture of the front wrinkling [4].

A PDE structurally similar to (1) was studied by Joulin
[5] for expanding circular flame fronts. By using a pole
decomposition method (see [5,6], and references therein),
Joulin reduced the PDE to a finite set of ordinary
differential equations (ODE) describing the motion of the
poles in the complex plane. The shape of the flame front
obtained from these particular solutions can then be de-
duced from the knowledge of the position of the poles at
each time 7. However, numerical and analytical results
show that the solutions of the ODEs do not resemble
those obtained from the numerical integration of the
original PDE. In particular, the number of wrinkles ob-
tained from the ODEs is independent of time and the cor-
responding (mean) expansion of the front is much slower
than the 7°/2 power law. For instance, in the case of the
one-pole solution (see its expression in Sec. II below), the
front grows linearly with time asymptotically and the an-
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gular position of the wrinkles is fixed. It was then sug-
gested [5,6] that nonlinearity alone is not enough to mim-
ic the experimental observations and that the results of
the spectral numerical integrations of [1] may be due to
computational noise. These conclusions led to the
derivation of another model [6], where pseudorandom
external forcing is included. In this case, it is shown that
many broad-banded exciting fields indeed lead to the rap-
id spawning of wrinkles.

In this paper, we return to the PDE (1) without exter-
nal forcing. From a pole decomposition of the solutions,
we derive exact solutions of the PDE and numerically in-
tegrate the set of ODEs thus obtained. We confirm the
results of [5] that these solutions are fundamentally
different from the experimental observations. This, how-
ever, is not too surprising to us since, in this approach,
the number of poles is fixed by assumption. Therefore,
while this method is extremely attractive for giving ac-
cess to exact solutions of the PDE, it does not address the
question of the stability of such solutions for the PDE it-
self. At this point, two questions need to be addressed.

(i) Are the solutions built with a fixed number of poles
stable for the PDE?

(ii) Are there stable solutions for the PDE that allow
the formation of new poles as time increases?

In other words, are the formation of the new wrinkles
and the fast acceleration of the flame front due to numer-
ical artifacts or, instead, are they intrinsic to the dynam-
ics of the PDE?

In this paper, we investigate the origin of the
discrepancy between the numerically obtained solution of
the PDE and the solutions of the set of ODEs. We per-
form numerical simulations of the PDE by filtering vari-
ous (but not all) sources of computational errors and ob-
tain results that support both the generation of wrinkles
and the power law for the acceleration of the mean flame
front. These findings indicate that the discrepancy be-
tween the solution of the set of ODEs and the numerical-
ly obtained solution of the PDE originates in the fact that
the functions containing a fixed number of poles are un-
stable solutions of the PDE. Consequently, they are not
observed in most numerical integrations and physical ex-
periments.

The paper is organized as follows. In Sec. II, we apply
a pole decomposition method to derive exact solutions of
the PDE (1) as well as the set of ODEs they satisfy. We
also give an analytical expression of the Fourier spectra
of such solutions. In Sec. III, we show that the PDE has
two invariant subspaces which we use in devising a noise
control procedure for the numerical integrations. We
present our numerical scheme in Sec. IV and integrate
both the PDE and the previous set of ODEs in Sec. V.
This is performed by using the same initial condition con-
sisting of one pole. We show that the role of the noise
outside the previous invariant subspaces is minor; in
both the unfiltered and filtered computations, the solution
of the PDE stays close to a configuration with 2N +1
poles before approaching a 2N +3-pole solution, as is
particularly clear in Fourier space. The process keeps re-
peating itself as time increases. We then conclude in the
last section.
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II. EXACT SOLUTIONS

For the sake of simplicity, we introduce the function
Y(6,7) which is related to the front ®(6,7) by the rela-
tion ®(6,7)=7+¥(6,7). From Eq. (1), it is straightfor-
ward to derive the PDE satisﬁed by ¥(6,7),
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We now apply a pole decomposition technique, assum-
ing that the function
k6—Z,(7)

2N
¥,.(0,7)=23 In 3

a=1

sin + fr (1) (6)

is a solution of (5). The time dependent Z ,’s are poles of
¥(0,7) in the complex plane and they appear in complex
conjugate pairs. Their dynamics is governed by the fol-
lowing system of ODEs:
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where Im denotes the imaginary part and the function
sgn has the usual meaning, namely, sgn(0)=0 and
sgn(x)=|x|/x if x7#0. Here ®(r) is related to f(7),
whose dynamics is deduced from the azimuthal average
of (5), i.e.,

d%(r) _ 1
dr 2

(W) .

For a pole solution (6), the number of cusps N is smaller
than or equal to /'< kN, where k is an integer.

For the following, it is useful to rewrite Eq. (6) by using
elementary mathematical functions with real arguments.
We thus decompose Z ,(7)=a,(7)+ib,(7), which, after
substitution in (6), leads to

N
W, (6,7)=2 3 Int{coshb,(7)

a=1
—cos[kO+a (T)]}+ fir(T) . (8)

A more general expression can be constructed by sum-
ming, over various k’s, two or more functions ¥, given
by (6) [or (8)]. Despite the nonlinearity of the PDE, this
new function is another solution of the PDE (5). Howev-
er, the laws of motion of the poles must be rewritten in
this case, particularly because the poles interact, due to
the action of the nonlinear terms.

For the simplest solution defined with one pole and its
conjugate [Z (7)=a(7)xib(7)], the dynamics takes the
simple form

i=0,
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The angular position of the wrinkles is therefore fixed,
as the angle values 8,=a(7y)+(27/k)i,0=i<k —1,
where a(7,) is constant. The set of ODEs, in this case,
reduces to a unique equation for b and the shape of the
flame front is given by

‘I’(O,T)=2ln—;-[COShb(T)—'COS(kO)]‘f‘f(T) . (10)

For these solutions, the mean radius of the flame front,
or the zero Fourier mode, ®y(7), of (0, 7), is obtained as
a function of b (7):

B(r)=®y(r)=71+2b(r)—4In2+ 1 (7) . an

The other Fourier modes (m+0) of ¥(0,7) are com-
puted by means of the method of residues, leading to the
equations

—nb(r)
N _22 77 if m =nk
@, (1= n

0 otherwise . (12)

It is then straightforward to see that the Fourier
J

e—nbj(r)
a
P, (r)= n

0 otherwise .

It is straightforward to deduce the Fourier transforms
(14) and (15) from the more general expressions (11) and
(12), using the fact that the Fourier transform is a linear
operator.

It is interesting to note that the one-pole solution (10)
and the (2N + 1)-pole solution (13) have common proper-
ties: they are both even functions of 6 (namely, invariant
under the reflection symmetry 6— — ) and periodic, of
period 27w /k (or 2w /ngk, where nyk is the first wave
number with nonzero Fourier coefficient) at all times. In
other words, their Fourier transforms are real functions
and the only nonzero Fourier coefficients correspond to
the wave number k and its harmonics. The more general
N-pole solutions (8) enjoy the latter property, but not the
former.

The previous pole decomposition is similar to that used
by Thual, Frish, and Henon [7], who have applied such a
procedure to the Michelson-Sivashinsky equation [8] (see
also Joulin and Cambray [9] and Renardy [10]). The N-
pole solutions (6) are also found by Joulin [S] and Minaev
[11], who used a slightly different method.

III. INVARIANT SUBSPACES FOR THE PDE

In the preceding section, we have mentioned that both
the one-pole solutions (10) and the (2N +1)-pole solu-
tions (13) have a real Fourier transform which takes
nonzero values only for the wave number k and its har-
monics. We now show that such properties are constants
of motion for the PDE (1). Indeed, if one of these two
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coefficients of the flame front @m are equal to those of
Y(0, 1), for all nonzero Fourier modes.

We now consider a particular subset of solutions of the
form (8), those given by the space-time functions

¥(6,7)=21InL[coshb (7)—cosk 6]

N
+2 3 In}{coshb;(7)—cos[kO+a;(7)]}
ji=1

N
+2 3 Inj{coshb;(7)—cos[kO—a;(T)]}

j=1
+f(7). (13)

For these solutions, the mean radius, or the zero
Fourier mode, is given by the expression

B(r)=®y(1)=7—(2+2N)In4+2b (1)

N
+4 3 b(1)+f(1), (14)

j=1

while the other Fourier modes (m #0) are

cosna;(t) if m =nk

(15)

properties holds initially, then it holds at all times. More
precisely, (a) if, at the initial time 7, the Fourier trans-
form of ®(0,7y) is real, then at any time 7275, ®(0,7)
has also a real Fourier transform; (b) if, at the initial time
70,®(6,7) has all its Fourier coefficients &,,(7,)=0 for
all integers m such that, for a given integer k,m /k is not
an integer, then ®(0,7), for 7= 7,, enjoys the same prop-
erty.

Equivalently, we say that the set of real functions in
[0,277], whose Fourier transform is real, 3, and the set
of real solutions in [0,27] whose Fourier coefficients are
nonzero only for one wave number k and its harmonics,
.., are two invariant subspaces for the PDE (1).

Properties (a) and (b) above can be easily shown by sub-
stituting the Fourier transform of ®(0,7), i.e.,

m=+eo
(0, 7)= ¥ @,(7r)exp(ikd) (16)
m=—o
in (1). This leads to the system of ODEs
dd, (1) A A
_— D ()P, (T)
PR IR
—— L, (n+ e () an
® o
and
d&’o(’r)_ 1

dr gt 2 m?|®,, ()| . (18)
m#0
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Properties (a) and (b) can then be deduced in a straight-
forward manner.

The consideration of the two previous invariant sub-
spaces can be very useful in studying the role played by
numerical noise. As is well known, avoiding roundoff er-
rors in numerical computations is a difficult task. For in-
stance, such errors often prevent us from obtaining zero
after simple arithmetic operations, even when the analyti-
cal result is zero. In this case, the value given by the
computer depends on the arithmetic precision. In the
present study, such an effect can be observed in the sim-
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ple computation of the Fourier transform of a one-pole
solution (10). In the example shown in Fig. 1(a), parame-
ters b and k have been set to the values b =1.0 and k =4.
Figure 1(b) displays its Fourier transform numerically
computed by using a standard fast Fourier transform
(FFT) algorithm. While it is clear that the computed
Fourier amplitudes, above the level of the numerical
noise, coincide with the expression (12) for the wave
number k and its harmonics, spurious nonzero ampli-
tudes appear at the level of roundoff errors for nonhar-
monic modes. In addition, high harmonic wave numbers
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FIG. 1. The initial flame front consisting of one pole [see expression (10) in the text]. Here, as in all subsequent figures, the
represented flame front is always normalized with the azimuthal mean radius, i.e., #(6,7)/¢(r). The distance to the real axis is
b=1.0: (a) the flame front itself; (b) the amplitude of the Fourier coefficients of the initial front: (x) values computed from the
analytical expression (12) in the text; (+) and (-) values computed using a standard FFT [(+) corresponds to the amplitude of the
principal modes and (-) corresponds to the appearance of spurious coefficients]; (¢) the imaginary part of the Fourier coefficients of

the initial front computed using a standard FFT.



52 FORMATION OF WRINKLES IN OUTWARDLY PROPAGATING FLAMES

for which the Fourier amplitude should be below the
noise level according to the analytical expression (12)
have an artificially high amplitude. Similarly, Fig. 1(c)
shows the imaginary part of the Fourier coefficients cor-
responding to harmonic wave numbers. It is clear that
while such modes should be identically zero, the numeri-
cal computation gives nonzero values.

Although the previous computation has nothing to do,
a priori, with the integration of the equation of motion
(1), it indicates that the invariance properties (a) and (b)
of the latter will not be satisfied through numerical in-
tegrations unless some special care is taken. This remark
is particularly valid for the specific solutions of the PDE
(1) which, at any given time, can be written as a superpo-
sition of poles (13). The effect of this artificial excursion
of the solution away from the invariant subspaces is not
known and deserves attention. In the next section, we
thus concentrate on numerical simulations for which the
initial condition lies in the invariant subspace 3 ;N3 ,.
We then perform simulations with and without noise con-
trol. In the former experiments, we impose that the solu-
tion stay in the invariant subspace 3, N3, at each time
by systematically setting all spurious Fourier amplitudes
to zero. In addition, we set all Fourier coefficients small-
er, in absolute value, than a certain threshold to zero, as
in the filter used in [12].

IV. NUMERICAL SCHEME

We have performed numerical integration of (1) by us-
ing the algorithm used in [1] consisting of a Fourier pseu-
dospectral procedure supplemented by the slaved-frog
method for the advancement in time (proposed and used
in [7]). The only differences between our algorithm and
that used in [1] lie in the fact that we use a high number
of Fourier modes from the initial stage of the computa-
tion and we do not increase this number as time evolves.
In addition, we apply the filter described in Sec. III in
some integrations.

The iterative process, used to compute the shape of the
flame front at 7+ 87 from the known shape at time 7, is
given by the equation

&, (r+67)=8,,(r—87)exp[20(m,7)87]

Gn(D | ool (m, )5 (19)
w(m,*r){ exp[2w(m,7)87]} ,
where
2
olmr)=+2Xm _ |7 20)
2 P(1) O(1)

Here (I\)m('r) denotes the mth Fourier coefficient of
®(6,7) and G,,(7) refers to the mth Fourier mode of the
function G(9,7)=%[<I>9/(T>(7')]2+1. In Eq. (19), the am-
plitude of all Fourier modes (except for m =0 and
m =N /2) is, in general, a complex number.

The total number of modes is fixed to N =16 384 in all
the numerical simulations reported here, and the time
step used is §7=0.01. The implementation of a time step
twice smaller than this value does not affect the results
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presented in this paper. The integration is performed
over the time intervals 7,=5=<7=r_,, =2000-4000.
This integration time and the number of Fourier modes N
are chosen to meet the criterion N >2.5y®(r) at each
time 7, as in [1]; this relation guarantees a good descrip-
tion of the interface in Fourier space. The initial condi-
tion is a one-pole solution given by the discretization of
the function ®(6,7y))=7,+¥(0,7y), where W(6,7,)
satisfies (10) with b(7y)=1. All our computations are
performed in double precision.

In the simulations where the noise control is turned on,
not only do we impose that the solution remain in the in-
variant subspace, but also we set the Fourier amplitudes
which are smaller, in absolute value, than a certain
threshold value, to zero, as in [12]. The selection of an
appropriate threshold depends on the precision of the
computation. Since we use double precision, we set the
threshold to 1072 in logarithmic scale, i.e.,
10g|<3,,| < —28. It is clear that this filtering technique
does not permit the control of round-off errors on
nonzero values inside the invariant subspaces.

V. NUMERICAL EXPERIMENTS

In all our computations, the thermal expansion
coefficient is fixed to the value used in [1], i.e., ¥y =0.8.
For this fixed parameter value, we first integrate the PDE
(1) without any particular filter. We recall here that our
initial condition, displayed in Fig. 1(a), consists of four
cusps whose numerically computed Fourier spectrum is
shown in Fig. 1(b). As the integration progresses, the
flame front evolves in a self-similar manner which mani-
fests itself in the formation of cusps on the interface.
This self-similarity is in a space-time sense: the number
of cusps keeps growing as time increases. Such a repeti-
tive creation of new cusps on the flame front leads to a
small scale wrinkled interface as shown in Fig. 2(a), con-
sistent with the earlier findings of [1]. This picture will
be compared later with that obtained with the filtered
computation [Fig. 2(b)]. Figure 3 gives some insight into
this phenomenon in Fourier space. There, one clearly ob-
serves that the Fourier spectrum corresponding to the in-
itial four cusp interface of Fig. 1 undergoes a local kink
at about time 7=719. Such a kink, occurring in the am-
plitude of the Fourier modes kK =4 and its harmonics, is
followed by an oscillation of this amplitude [Fig. 4(a)],
which corresponds, in physical space, to the birth of four
pairs of wrinkles. Figure 4(b) shows that the two wrin-
kles in each new pair emerge at symmetric positions on
both sides of each initial cusp. This symmetry, charac-
teristic of the invariant subspace 3,;, persists at all subse-
quent times. This first instability is followed by a second
one through which a second frequency appears in the os-
cillation of the Fourier amplitudes, a phenomenon which
can be observed in Figs. 4(c) and 4(e). This second defor-
mation, apparent at 7=863, corresponds, in physical
space, to the symmetric formation of pairs of new cusps
on both sides of the previously generated cusps [see Figs.
4(d) and 4(f)]. The process, which keeps repeating itself
(in the same symmetric manner), is responsible for the
flame fractalization and the highly wrinkled structure of
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the interface after some time. As time evolves, the gen-
eration of cusps is not the only phenomenon which takes
place: there is a rich dynamics of the wrinkles consisting
of both a deformation of their shape and a motion in the
azimuthal direction. Meanwhile, the mean (fluctuating)
front accelerates at a rate consistent with a /2 power
law.

It is difficult, a priori, to estimate the effect of the spuri-
ous amplitudes on the dynamics of the active Fourier
mode k and its harmonics, and vice versa. During the
events previously described, the amplitude of the spuri-
ous wave numbers increases. It also becomes very struc-
tured, mimicking the behavior of the active modes. Lo-
cal kinks and oscillations, for instance, can be clearly ob-

(a)
1+ i
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0.5 } i
a1k 4
-1 05 0 0.5 1
(b)
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05F .
1k ]
1 05 0 05 1

FIG. 2. The flame front computed by the numerical simula-
tion of Eq. (1): (a) flame front at time 7=7668 from the
unfiltered computation; (b) flame front at time 7=7668 from the
filtered computation.
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served in the spurious real part of the Fourier spectrum
after the first instability [see, e.g., Fig. 4(c)]. The trigger-
ing kink described above, however, seems to appear
among the mode k and its harmonics first, indicating that
the latter are responsible for the instability. In any case,
the dynamics of these active modes greatly influences the
behavior of the spurious ones. We then apply the noise
filter described in Sec. III and reiterate our numerical ex-
periments with the same initial condition.

The filtered simulations give the same picture as the
original numerical integrations. The one-pole solution
(10) is found to be unstable, and new symmetric wrinkles
appear on both sides of each original cusp. A more de-
tailed comparison can be achieved by examining Figs. 4
and 5 which show that the first and second instabilities
occur at about the same time in both simulations. In ad-
dition, after a rather long time, =7668, for instance, the
number of cusps that have formed on the interface is
similar in both simulations [see Figs. 2(a) and 2(b)]. Such
generation of wrinkles keeps occurring as time increases.
These results indicate that the generation of new cusps is
intrinsic to the dynamics of the mode k and its harmon-
ics, rather than being due to the small amplitude numeri-
cal noise developing among nonharmonic modes when no
filter is applied.

We now investigate the connection between the solu-
tion obtained in our filtered numerical integrations and
the exact pole solutions of Sec. II. For this purpose, we
first recall that the filter numerically applied is equivalent
to forcing the dynamics to remain in the invariant sub-
space ¥ ;MNY, defined in Sec. III. In this subspace, two
good candidates for the front flame shape are given by
®(7)=7+WY(7), where ¥(r) satisfies Eq. (13) with N =1
and N =2. From their analytical Fourier transforms
(15), we know that these functions have an oscillating

10 T T T T T

In|é,|

4000

1000 2000 3000 5000 6000

m

FIG. 3. The amplitude of the Fourier coefficients of the flame
front at time 7=719 obtained in the unfiltered computation
showing the onset of the first instability.
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FIG. 4. The evolution of the solution obtained from the unfiltered simulation of Eq. (1) as time evolves showing the two first insta-
bilities at times 7=767, 863, 910: (a), (c), (e) show the evolution of the amplitude of the Fourier coefficients, and (b), (d), (f) show the

formation of new cusps in the flame front.
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FIG. 5. The same as in Fig. 4 with the filtering procedure described in Sec. IV.




52 FORMATION OF WRINKLES IN OUTWARDLY PROPAGATING FLAMES

Fourier spectrum and their shape in physical space exhib-
its symmetric wrinkles around the original cusps located
at the angular positions 0=0,7/2,7,37 /2. The results
of our numerical simulations displayed in both the physi-
cal space and the Fourier space indicate that the numeri-
cal solution strongly resembles the analytical expression
(13) with n =1 after the first instability onset, and n =2
after the second instability has occurred, as we explain
below.

After a transient time, the solutions obtained with and
without filter are consistent with a 73/ power law for the
acceleration of the mean radius. More precisely, the (az-
imuthal) mean of the function WY(0,7), that is,
V(r)=(1/2m) f é”\ll( 6,7)d 0, is increasing according to a
73’2 power law (see also [1]). For large times, if this law
persists, the term ¥(7) will overcome the linear growth
and therefore dominate in the expression of ®(7). Conse-
quently, the latter will exhibit a 73/ power law as well
(see Fig. 6 for this tendency in our numerical simulation
at relatively early times). It is clear that both theoretical
investigations and well resolved numerical integrations
on longer time intervals are needed to confirm this scal-
ing behavior. This point, however, is beyond the scope of
the present paper.

We have also performed numerical integrations of the
ODEs (9) with the same one-pole initial condition as for
the PDE. These integrations are performed using a
Runge-Kutta-Merson method [13] over a full time inter-
val 7E€[5,4000] successively divided into small intervals
of duration 67=0.1. Since the number of poles here is
fixed by construction, we do not observe the creation of
new poles or cusps. As found numerically and analytical-
ly in [5], the distance of the pole to the real axis, b(7),
asymptotically decreases proportionally to 1/7 in this
solution. The corresponding mean radius increases
linearly with time asymptotically [®(7) <« 7] and there-
fore, no accelerating component is present. Our aim,
however, in performing this simulation, is to compare
such a solution with that obtained from the PDE (1) be-
fore the occurrence of the first instability. In Fig. 7, we
carry out such comparison between the solution of the
ODE (9) and the results obtained from both the unfiltered
and filtered integrations of the PDE (1). Assuming that
the solution of the latter is close to a pole solution, we ex-
tract b (7) from the numerically computed Fourier spec-
trum and Eq. (12) with n =1 and n =2. Both curves thus
obtained coincide, up to the time where the one-pole
solution becomes unstable (see Fig. 7). In addition, a
comparison between Figs. 7(a) and 7(b) and Figs. 7(c) and
7(d) shows that the presence of the spurious Fourier
modes does not have much influence on this first part of
the integration. (Although the previous extraction tech-
nique is no longer formally valid in presence of noise in
the imaginary part of the Fourier spectrum, we still use it
as a reference criterion in unfiltered simulations.) While
the extracted b (7) first increases, it then decreases. This
decrease becomes linear in 1/7 just before the occurrence
of the instability, reproducing, in this finite time interval,
the asymptotic behavior provided by the ODE. A more
precise comparison between the ODE and the PDE dy-
namics is performed in Fig. 8.
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Similarly, Fig. 9 displays the Fourier spectrum of the
three-pole (symmetric) solution (13) with N =2, a, =0.2,
a,=0.31, b=5b,=0.01, and b,=0.02. We recall that
Fig. 5(e) shows the solution of the PDE (1) right after the
second pairs of cusps have appeared. The similarity be-
tween the two figures indicates that Eq. (13) is a good
description of the flame front obtained from the PDE
after the second instability and before the third one. (The
slight discrepancies that can be observed should vanish as
the parameters of the three-pole solution are better ad-
justed.) A qualitative comparison of the solution of the
PDE (1) in a time interval between the Nth instability and
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FIG. 6. The growth of the azimuthal average of the fluctua-
tion ¥ as a function of 7°/%: (a) obtained with the unfiltered
simulation; (b) obtained with the filtered simulation of Eq. (1).
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the (N +1)th instability indicates that the (2N +1)-pole

solution (13) remains a good model during this time inter-
val.

VI. CONCLUDING REMARKS

The study performed in this paper confirms that the
model derived in [1] for the outward propagating spheri-
cal flame in the regime of well developed hydrodynamic
instability leads to the self-fractalization of the flame
front. This mechanism consists of successive instabilities
through which cusps are born: the interface becomes
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more and more wrinkled as time increases. Computa-
tional round-off errors in the integration of the PDE are,
however, found to be responsible for the birth and
growth of spurious Fourier modes in the solution. When
the latter are filtered, which is equivalent to maintaining
the solution in well defined invariant subspaces, self-
fractalization persists. Nevertheless, this behavior is fun-
damentally different from exact pole-solutions for which
the number of poles (and cusps) is constant. It has been
shown in [5], and confirmed in this paper, that such poles
asymptotically approach the real axis, a phenomenon
which is inconsistent with the faster expansion of the
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FIG. 7. The evolution of the solution from the unfiltered and filtered simulations of Eq. (1) before the first instability— extraction
of b(7) from the computed Fourier spectrum of the numerical solution: (x) computation from Eq. (12) with n =1; (+) computation

from Eq. (12) with n =2. The curves overlap: (a) linear plot from the unfiltered simulation; (b) log-log plot from the unfiltered simu-
lation; (c) linear plot from the filtered simulation; (d) log-log plot from the filtered simulation.
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FIG. 8. Computation of b(7): (x) from the filtered simula-
tion of Eq. (1) as in Fig. 7, (+) from the unfiltered simulation of
Eq. (1), (—) from the numerical integration of the ODE (9).

flame front. On the one hand, it is clear that the con-
sideration of the previous pole solutions alone, as well as
the integration of the ODEs they satisfy, is not enough
for a proper answer to this question. On the other hand,
our filtered numerical integrations of the PDE are cer-
tainly not noise free and the remaining round-off errors
seem to play the role of the small perturbation necessary
for triggering the successive instabilities observed. The
resulting self-fractalization process can then be under-
stood as a solution that successively visits various sym-
metric pole solutions. Before the first formation of extra
cusps, we have shown that the flame interface closely fol-
lows the one-pole solution and its temporal behavior; in-
stead, after the first instability and before the second one,
the flame interface closely resembles the symmetric
three-pole solution. Although a detailed, quantitative
comparison has not been carried out, a good description
of the flame front obtained from the integration of the
PDE seems to be provided by the symmetric, exact
(2N —1)-pole solution between the (N —1)th and Nth in-
stabilities. The acceleration of the mean front radius is
clearly due to these successive births of poles as the latter
first go away from the real axis before approaching it
again as they develop (see Figs. 7 and 8).

One may wonder whether such a fractalization process,
as a whole, is computational noise. Our results show
that, if this was the case, then such noise would be ex-
tremely well organized. Although we have not fully ex-
plained the entire space-time behavior, we have presented
analytical expressions for the spatiotemporal structure of
the solutions away from the instabilities. It would be in-
teresting to understand and describe the space-time dy-
namics and its symmetries by using the approach of
[14,15]. Indeed, the successive visits to the (2N¥ +1)-pole
analytical solutions where N increases as time evolves is
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FIG. 9. The amplitude of the Fourier coefficients of the
three-pole solution (13) with b=5b,=0.01, b,=0.02 and
a,=0.2,a,=0.31.

similar, in a certain sense, to a uniformly traveling wave,
for instance. Viewed from this perspective, the latter is
nothing but the successive visits in time to various
profiles which are images one of another by (spatial)
translation symmetry. In the self-fractalization process
studied in this paper, we anticipate that space-time sym-
metries also play a crucial role. They are, however, obvi-
ously different from translations. Whether they are relat-
ed to space-time dilation symmetries as in the cascade
process of fully developed turbulence [16] still remains an
open question. The possible power-law behavior of the
mean front expansion seems to indicate that this may be
the case.

In addition to the fact that the self-fractalization may
be related to the cascade process of turbulence, it is cer-
tainly more universal than the specific equation treated
here. For instance, it has been recently reproduced in nu-
merical integrations of a more general, geometrically in-
variant, model [17] for the flame dynamics in its well
developed hydrodynamic instability [18].
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